1 (b) 1 mole of CH_{4} contains 4 mole of hydrogen atom i.e. $4 g$ atom of hydrogen.
2 (a) 6×10^{23} molecules has mass $=18 \mathrm{gm}$
1 molecules has mass $=\frac{18}{6 \times 10^{23}}=3 \times 10^{-23} \mathrm{gm}$

$$
=3 \times 10^{-26} \mathrm{~kg}
$$

3 (b) $\because 22400 \mathrm{ml}$ at NTP has 6.023×10^{23} molecule
$\therefore 1 \mathrm{ml}$ at NTP has $=\frac{6.023 \times 10^{23}}{22400}$

$$
=0.0002688 \times 10^{23}=2.69 \times 10^{19}
$$

4 (a) $16 \mathrm{~g} \quad \mathrm{O}_{2}$ has no. of moles $=\frac{16}{32}=\frac{1}{2}$
$14 g N_{2}$ has no. of moles $=\frac{14}{28}=\frac{1}{2}$
No. of moles are same, so no. of molecules are same.
5. (a) 1 mole of sucrose contains 6.023×10^{23} molecules
$\because 1$ molecule of sucrose has 45 atoms
$\therefore \quad 6.023 \times 10^{23}$ molecule of sucrose has $45 \times 6.023 \times 10^{23}$ atoms $/ \mathrm{mole}$
6. (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dibasic $\mathrm{N}=2 \mathrm{M}=2 \times 2=4$.
7. (d) NaOH HCl
$N_{1} V_{1}=N_{2} V_{2} ; 20 \times \frac{1}{10}=\frac{1}{20} \times V ; V=40 \mathrm{ml}$.

8 (d) The equivalent weight of $\mathrm{H}_{3} P O_{4}=\frac{\text { molecular weight }}{2}$
\because mole wt of $H_{3} P O_{4}=3+31+64=98$
$\therefore \frac{98}{2}=49$

9----- a
10 ------ c
11-------a
12 One mole of electron $=6.023 \times 10^{23}$ electron
Mass of one electron $=9.1 \times 10^{-28} \mathrm{gm}$
Mass of one mole of electrons

$$
\begin{aligned}
& =6.023 \times 10^{23} \times 9.1 \times 10^{-28} \mathrm{gm}=5.48 \times 10^{-4} \mathrm{gm} \\
& =5.48 \times 10^{-4} \times 1000 \mathrm{mg}=0.548 \mathrm{gm} \approx 0.55 \mathrm{mg}
\end{aligned}
$$

13 (a) Charge on proton $=+1$ unit, charge on α particle $=+2$ units, $2: 1$.
14. (b) Four unpaired electron are present in the $F e^{2+}$ ion $F e_{26}^{2+}=[A r] 3 d^{6}, 4 s^{0}$

15 (c) Na^{+}has 10 electron and Li^{+}has 2 electron so these are different number of electron from each other.
16 easy
17. (c) ${ }_{7} X^{14}, n=14-7=7$

18 (c) α-particles pass through because most part of the atom is empty.
19 (d) The electron can move only in these circular orbits where the angular momentum is a whole number multiple of $\frac{h}{2 \pi}$ or it is quantised.
20. (b) $E \propto \frac{1}{\lambda} ; E_{1}=\frac{1}{8000} ; E_{2}=\frac{1}{16000}$
$\frac{E_{1}}{E_{2}}=\frac{16000}{8000}=2 \Rightarrow E_{1}=2 E_{2}$

If $l=2, m \neq-3 .=(-e$ to $+e)$.

22 (c) When $l=3$ then $m=-3,-2,-1,0,+1,+2,+3 . m=-l$ to $+l$ including zero.

23 a (b)For $n=1, l=0$.
24(a) Values of energy in the excited state $=-\frac{13.6}{n^{2}} \mathrm{eV}=\frac{-13.6}{4}=-3.4 \mathrm{eV}$ in which $n=2,3,4$ etc.
25 (a) Both assertion and reason are true and reason is the correct explanation of assertion.
26. (d) $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$. In this reaction $5 e^{-}$are needed for the reduction of Mn^{2+} as:
$\mathrm{MnO}_{4}^{-}+5 e^{-} \rightarrow \mathrm{Mn}^{2+}$.

27 (d) $4 \stackrel{0}{\mathrm{~F}} e+3 \mathrm{O}_{2} \rightarrow 4 \stackrel{3+}{\mathrm{F} e}+6 \mathrm{O}^{2-}$, in this reaction metallic iron is oxidised to Fe^{3+}.
28. (b) $\stackrel{0}{\mathrm{Zn}}+\stackrel{+2}{\mathrm{CuSO}} \mathrm{S}_{4} \rightarrow \mathrm{ZnSO}_{4}+\stackrel{0}{\mathrm{Cu}}$

In this reaction Cu^{2+} change in Cu^{o}, hence it is called as reduction reaction.
29. (b) Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ act as a both oxidising and reducing agent.
30. (b) $\left[\stackrel{*}{\mathrm{Cr}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$, take water $+2-2=0$
$x+0+2(-1)=+1 ; \quad x-2=+1$
$x=+3$ for $C r$ in complex
31. (d) All are isoelectronic but O^{2-} has lowest charge among them. So it is largest in size.

32 (a) As effective nuclear charge on Na^{+}is maximum. It has smallest size.
33. (d) As the nuclear charge per electron is maximum in P^{5+}. Therefore its size is smallest.

34 (c) $N a^{+}-10$ electron; $L i^{-}-4$ electron

35 (d) Hydrogen can loose one electron (e.g. $H F$). It can gain one electron (e.g. NaH), Hydrogen can also share one electron (e.g. $H-H)$.
36. (c) Hydrogen resembles both alkali metals and halogens.
37. (b) Hardness of water is due to the presence of bicarbonates, chlorides and sulphates of $C a$ and $M g$ on it. These $C a^{2+}$ and $M g^{2+}$ ions react with the anions of fatty acids present in soaps to form curdy white precipitates. As a result, hard water does not produce lather with soap immediately.
(b) We know that
$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$2 \times 34 g \quad 22400 \mathrm{ml}$
$\because 2 \times 34 \mathrm{gm}=68 \mathrm{gm}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ liberates
$22400 \mathrm{ml} \mathrm{O}_{2}$ at STP
$\therefore .68 \mathrm{gm}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ liberates
$=\frac{.68 \times 22400}{68}=224 \mathrm{ml}$
40. (b) When sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ is heated, sodium carbonate, CO_{2} and water are formed.
$2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \underset{\text { Sodium carbonate }}{\mathrm{Na}_{2} \mathrm{CO}_{3}}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
41 -----(d) $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
42 --- ns2
43 (b) 3-methylhexane

44
(b)

45. (b) Element. No. of moles Simple ratio

C	12	$49.3 / 12=4.1$	$4.1 / 2.7=1.3 \times 2=2.6=3$
H	1	$6.84 / 1=6.84$	$6.84 / 2.7=2.5 \times 2=5$
O	16	$43.86 / 16=2.7$	$2.7 / 2.7=1 \times 2=2$

Empirical formula $=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
E.F. wt. $=12 \times 3+1 \times 5+16 \times 2=73$

Molecular wt $=$ V.D. $\times 2=73 \times 2=146$

$$
n=\frac{M \cdot w t}{E \cdot F \cdot w t}=\frac{146}{73}=2
$$

Molecular formula $=(\mathrm{E} . \mathrm{F})_{n}=\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}=\mathrm{C}_{6} H_{10} \mathrm{O}_{4}$.

46 (c) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$

47

48
(d)

49.

50-
(C) substitution

PART - B 2 MARKER

(1) $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{xH}_{2} \mathrm{SO}_{4}+\mathrm{ySO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{zH}_{2} \mathrm{O}$

The values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are:
(a) $1,3,1$
(b) $4,1,4$
(c) $3,2,3$
(d) 2, 1, 2

Ans. (a)
Hint: $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
(2) To form $10 \% \mathrm{w} / \mathrm{w}$ solution, 36.5 g HCl must be dissolved in \qquad g of water.
(a) 328.5
(b) 365
(c) 401.5
(d) 715.5

Ans. (a)
Hint: $\quad 10 \% \mathrm{w} / \mathrm{w}=\frac{36.5}{36.5+\mathrm{w}} \times 100$
$\therefore 36.5+w=365$
$\therefore \mathrm{W}=328.5 \mathrm{~g}$.
(3) If the electronic configuration of nitrogen had $1 s^{7}$, it would have energy lower than that of normal ground state configuration $1 s^{2} 2 s^{2} 2 p^{3}$ because the electrons would be closer to the nucleus. Yet $1 s^{7}$ is not observed because it violates:
(a) Heisenberg uncertainty principle
(b) Hund's rule
(c) Pauli's exclusion principle
(d) Bohr postulates of stationary orbits

Ans: (c)
(4) The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg} \mathrm{~ms}^{-1}$. The uncertainty in its position will be:
(a) $1.05 \times 10^{-28} \mathrm{~m}$
(b) $5.27 \times 10^{-26} \mathrm{~m}$
(c) $1.05 \times 10^{-30} \mathrm{~m}$
(d) $5.25 \times 10^{-28} \mathrm{~m}$

Ans: (c)
Hint: $\quad \Delta x \cdot \Delta p=\frac{h}{4 \pi}$
$\therefore \quad \Delta \mathrm{x}=\frac{6.626 \times 10^{-34}}{1 \times 10^{-5} \times 4 \times 3.14}=5.27 \times 10^{-26} \mathrm{~m}$
(5) Which one is descending order of atomic radius of elements of third period.
$\mathrm{Na}(\mathrm{Z}=11), \mathrm{Mg}(\mathrm{Z}=12), \mathrm{Al}(\mathrm{Z}=13)$ and $\mathrm{Si}(\mathrm{Z}=14)$?
(a) $\mathrm{Si}>\mathrm{Al}>\mathrm{Mg}>\mathrm{Na}$
(b) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Al}>\mathrm{Si}$
(c) $\mathrm{Na}<\mathrm{Mg}<\mathrm{Al}<\mathrm{Si}$
(d) $\mathrm{Na}>\mathrm{Al}>\mathrm{Mg}>\mathrm{Si}$

Ans: (b)
Hint: Atomic radius decreases from left to right in a period.
(6) Which order is true with reference to size of species?
(a) $\mathrm{Pb}<\mathrm{Pb}^{2+}<\mathrm{Pb}^{4+}$
(b) $\mathrm{Pb}^{4+}>\mathrm{Pb}^{2+}>\mathrm{Pb}$
(c) $\mathrm{Pb}>\mathrm{Pb}^{2+}>\mathrm{Pb}^{4+}$
(d) $\mathrm{Pb}^{2+}<\mathrm{Pb}<\mathrm{Pb}^{4+}$

Ans: (c)
Hint: As the positive charge of cations increases its atomic radius decreases.
(7) Which substance is the reducing agent in the reaction?

$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Ag}$

(a) $\mathrm{CH}_{3} \mathrm{CHO}$
(b) $\mathrm{Ag}_{2} \mathrm{O}$
(c) $\mathrm{CH}_{3} \mathrm{COOH}$
(d) Ag

Ans: (a)
Hint: $\quad \mathrm{CH}_{3} \mathrm{CHO}$ reduces $\mathrm{Ag}_{2} \mathrm{O}$ to Ag and oxidizes itself to $\mathrm{CH}_{3} \mathrm{COOH}$. Hence it is the reducing agent.
(8) What is the oxidation number of N in $\mathrm{N}_{3} \mathrm{H}$?
(a) 2
(b) 1
(c) $-1 / 3$
(d) 0

Ans: (c)
Hint: Oxidation number of N in $\mathrm{N}_{3} \mathrm{H}$ is, $3 \mathrm{x}+(+1)=0 . \quad \therefore \mathrm{x}=-1 / 3$
(9) What is formed when calcium carbide reacts with heavy water?
(a) CaD_{2} and $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) $\mathrm{C}_{2} \mathrm{D}_{2}$ and CaH_{2}
(c) $\mathrm{Ca}(\mathrm{OH})_{2}$ and D_{2}
(d) $\mathrm{C}_{2} \mathrm{D}_{2}$ and $\mathrm{Ca}(\mathrm{OD})_{2}$
(10) One mole of calcium phosphide on reaction with excess of water gives:
(a) One mole of phosphine
(b) Two mole of phosphoric acid
(c) Two mole of phosphine
(d) One mole of phosphorous (V) oxide Ans:
(c)

Hint: $\quad \mathrm{Ca}_{3} \mathrm{P}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{3}+2 \mathrm{PH}_{3}$
(11) The first ionisation energies of alkaline earth metal are higher than those of the alkali metals. This is because:
(a) there is increase in the nuclear charge of the alkaline earth metal.
(b) there is decrease in the nuclear charge of the alkaline earth metal.
(c) there is change in nuclear charge.
(d) none of the above

Ans: (a)
Hint: Due to presence of two paired electrons in alkaline earth metal, their first ionisation energies are higher than alkali metals which have only 1 unpaired electron.
(12) What is produced on passing CO_{2} gas through an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
(a) NaOH
(b) NaHCO_{3}
(c) OH
(d) $\mathrm{H}_{2} \mathrm{O}$

Ans: (b)
Hint: $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{NaHCO}_{3}$

PART - C 3 MARKERS

(1) The volume of 32 gram CH_{4} gas, 710 gram Cl_{2} gas and 64 gram O_{2} gas at STP is. \qquad and \qquad .litre respectively.
(a) $22.4,71,22.4$
(b) 44.8, 710, 22.4
(c) $22.4,710,44.8$
(d) $44.8,710,44.8$

Ans: (d)
Sol: Molecular wt. of CH_{4} gas
$=16$ gram per mole
Cl_{2} gas is 71 gram per mole and O_{2} gas is 32 gram per mole
Mole of $\mathrm{CH}_{4}=\frac{32}{16}=2$
Mole of $\mathrm{Cl}_{2}=\frac{710}{71}=10$
Mole of $\mathrm{O}_{2}=\frac{64}{32}=10$
At STP volume of 1 mole of gas is 22.4 Ltr .
Volume of 2 mole of CH_{4} is 44.8 Ltr .
10 mole of Cl_{2} is 710 Ltr . and 2 mole of O_{2} is 44.8 Ltr .
(2) The angular momentum of an electron of hydrogen atom in L orbit is. \qquad J.S.
(a) 1.1102
(b) 6.626
(c) 2.2086
(d) 2.1102

Ans: (d)
Sol: \quad The value of n for an electron present in L orbit $=2$
The angular momentum of an electron
$=\frac{\mathrm{nh}}{2 \pi}=\frac{2 \times 6.626 \times 10^{-34} \mathrm{~J} . \mathrm{S} .}{2 \times 3.14}=2.1102 \mathrm{~J} . \mathrm{S}$.
(3) The correct sequence which shows decreasing order of the ionic radii of the elements is...
(a) $\mathrm{Na}^{+}>\mathrm{F}^{-}>\mathrm{Mg}^{+2}>\mathrm{O}^{-2}>\mathrm{Al}^{+3}$
(b) $\mathrm{O}^{-2}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{+2}>\mathrm{Al}^{+3}$
(c) $\mathrm{Al}^{+3}>\mathrm{Mg}^{+2}>\mathrm{Na}^{+}>\mathrm{F}^{-}>\mathrm{O}^{-2}$
(d) $\mathrm{Na}^{+}>\mathrm{Mg}^{+2}>\mathrm{Al}^{+3}>\mathrm{O}^{-2}>\mathrm{F}^{-1}$

Ans: (b)
(4) The sum of oxidation number of each H , each peroxide bonded oxygen and each sulphur in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is.........
(a) +4
(b) +6
(c) +7
(d) +8

Ans: (b)
Sol: \quad Each H atom has oxidation number +1 .
Each peroxide bonded oxygen has oxidation number $-1 \rightarrow \mathrm{~S}$ has oxidation number +6 .
(5) Match list-I with list-II and select the correct answers using the codes given below the list.

	List - I		List - II
1.	Liquid hydrogen	a.	Haber process

2.	Heavy water	b.	Temperature hardness
3.	Hydrogen peroxide	c.	Honey comb
4.	Dihydrogen	d.	Spaceshuttles
5.	Clark's method	e.	Production of fertilizers
6.	$\mathrm{Na}_{2} \mathrm{AlSi}_{4} \mathrm{O}_{12}$	f.	Perhydral

(a) $1 \rightarrow \mathrm{f}, 2 \rightarrow \mathrm{e}, 3 \rightarrow \mathrm{~d}, 4 \rightarrow \mathrm{a}, 5 \rightarrow \mathrm{~b}, 6 \rightarrow \mathrm{c}$
(b) $1 \rightarrow \mathrm{~d}, 2 \rightarrow \mathrm{e}, 3 \rightarrow \mathrm{f}, 4 \rightarrow \mathrm{a}, 5 \rightarrow \mathrm{~b}, 6 \rightarrow \mathrm{c}$
(c) $1 \rightarrow \mathrm{~d}, 2 \rightarrow \mathrm{e}, 3 \rightarrow \mathrm{f}, 4 \rightarrow \mathrm{a}, 5 \rightarrow \mathrm{c}, 6 \rightarrow \mathrm{~b}$
(d) $1 \rightarrow \mathrm{e}, 2 \rightarrow \mathrm{~d}, 3 \rightarrow \mathrm{f}, 4 \rightarrow \mathrm{a}, 5 \rightarrow \mathrm{~b}, 6 \rightarrow \mathrm{c}$

Ans. (b)
(6) The IUPAC name of the compound

is
(a) 5 - chloro - 1 - nitro nonan -2 - one
(b) 6 - chloro - 2 - nitro decan - 3 - one
(c) 5 - chloro - $9-$ nitro decan 3 - one (d) $5-$ chloro -9 - nitro nonan -3 - one

Ans. (b)
Hint:

6-chloro-2-nitro decan-3-one

PART - D 4 MARKERS

(1) Match list-I and list-II and find the correct answer from the code given below.

	$\begin{gathered} \text { List - I } \\ \text { Alkyl functional } \end{gathered}$		List - II Name of functional group
1.		a.	Normal pentyl
2.	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{2}-$	b.	Neopentyl
3.		c.	Isobutyl
4.		d.	Tert. Butyl

5.	e.	Sec.butyl	
	$\mathrm{CH}_{3}-\mathrm{C}-$		
	CH_{3}		
6.	CH_{3}	f.	Isopropyl
	$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{2}-$		
\mid			
	CH_{3}		

(a) $1 \rightarrow \mathrm{c}, 2 \rightarrow \mathrm{e}, 3 \rightarrow \mathrm{a}, 4 \rightarrow \mathrm{f}, 5 \rightarrow \mathrm{~b}, 6 \rightarrow \mathrm{~d}$
(b) $1 \rightarrow \mathrm{f}, 2 \rightarrow \mathrm{a}, 3 \rightarrow \mathrm{c}, 4 \rightarrow \mathrm{e}, 5 \rightarrow \mathrm{~d}, 6 \rightarrow \mathrm{~b}$
(c) $1 \rightarrow \mathrm{f}, 2 \rightarrow \mathrm{a}, 3 \rightarrow \mathrm{e}, 4 \rightarrow \mathrm{c}, 5 \rightarrow \mathrm{~d}, 6 \rightarrow \mathrm{~b}$
(d) $1 \rightarrow \mathrm{f}, 2 \rightarrow \mathrm{e}, 3 \rightarrow \mathrm{a}, 4 \rightarrow \mathrm{c}, 5 \rightarrow \mathrm{~d}, 6 \rightarrow \mathrm{~b}$

Ans. (c)
2. The mole fraction of the solute in one molal aqueous solution is
(a)
0.027 (b) 0.036
(c) 0.018
(d) 0.009

ANS
(c) $W=1000 \mathrm{gm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; n=1$ mole

$$
N=\frac{W}{M}=\frac{1000}{18}=55.55
$$

$$
x_{\text {Solute }}=\frac{n}{n+N}=\frac{1}{1+55.55}=0.018 .
$$

3. The normality of 0.3 M phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is
[IIT 1999; AIIMS 2000]
(a) 0.1
(b) 0.9
(c) 0.3
(d) 0.6

ANS . (d)Basicity of $\mathrm{H}_{3} \mathrm{PO}_{3}$ is 2 .
Hence $0.3 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{3}=0.6 \mathrm{~N}$.

