CHEMISTRY

AXAY SIR 9426340530, 8140940630

M.Sc.,B.Ed.FCSE, B.Ed. - (HI) New Delhi RCI - New Delhi Registered Teacher

ADVANTAGE KOTA

MEGHA M'AM 9426572216

BIOLOGY

M.Sc., B.Ed.

11 - 12 SCI

IIT - JEE

GUJCET

GSEB

CBSE

Eng - Med / Guj - Med

Chemical bonding Part - 1

1. Which forms a crystal of NaCl

[CPMT 1972; NCERT 1976; DPMT 1996]

- (a) NaCl molecules
- (b) Na^+ and Cl^- ions
- (c) Na and Cl atoms
- (d) None of the above
- 2. When sodium and chlorine reacts then
- [NCERT 1973]
- (a) Energy is released and ionic bond is formed
 - (b) Energy is released and a covalent bond is formed
 - (c) Energy is absorbed and ionic bond is formed
 - (d) Energy is absorbed and covalent bond is formed
- **3.** Which one is least ionic in the following compounds

[CPMT 1976; BHU 1998]

- (a) AgCl
- (b) KCl
- (c) $BaCl_2$
- (d) CaCl₂
- **4.** The electronic configuration of four elements *L*, *P*, *Q* and *R* are given in brackets

$$L(1s^2, 2s^2 2p^4), Q(1s^2, 2s^2 2p^6, 3s^2 3p^5)$$

$$P(1s^2, 2s^2 2p^6, 3s^1), R(1s^2, 2s^2 2p^6, 3s^2)$$

The formulae of ionic compounds that can be formed between these elements are [NCERT 1983]

- (a) L_2P , RL, PQ and R_2Q (b) LP, RL, PQ and RQ
- (c) P_2L , RL, PQ and RQ_2 (d) LP, R_2L , P_2Q and RQ
- **5.** Electrovalent compound's
- [MP PMT 1984]
- (a) Melting points are low
- (b) Boiling points are low
- (c) Conduct current in fused state
- (d) Insoluble in polar solvent
- **6.** A electrovalent compound is made up of

[CPMT 1978, 81; MNR 1979]

- (a) Electrically charged molecules
- (b) Neutral molecules
- (c) Neutral atoms
- (d) Electrically charged atoms or group of atoms
- 7. Electrovalent bond formation depends on
 - (a) Ionization energy
- (b) Electron affinity
- (c) Lattice energy
- (d) All the three above
- In the following which substance will have highest boiling point [NCERT 1973; MP PMT 1990]
 - (a) He
- (b) CsF
- (c) NH_3
- (d) CHCl₃

9. An atom of sodium loses one electron and chlorine atom accepts one electron. This result the formation of sodium chloride molecule. This type of molecule will be

[MP PMT 1987]

- (a) Coordinate
- (b) Covalent
- (c) Electrovalent
- (d) Matallic bond
- **10.** Formula of a metallic oxide is *MO*. The formula of its phosphate will be **[CPMT 1986, 93]**
 - (a) $M_2(PO_4)_2$
- (b) $M(PO_4)$
- (c) M_2PO_4
- (d) $M_3(PO_4)_2$
- 11. From the following which group of elements easily forms cation
 - (a) F, Cl, Br
- (b) Li, Na, K
- (c) O, S, Se
- (d) N, P, As
- Which type of compounds show high melting and boiling points [CPMT 1996]
 - (a) Electrovalent compounds
 - (b) Covalent compounds
 - (c) Coordinate compounds
 - (d) All the three types of compounds have equal melting and boiling points
- 13. Lattice energy of an ionic compound depends upon

[AIEEE 2005]

- (a) Charge on the ion only
- (b) Size of the ion only
- (c) Packing of ions only
- (d) Charge on the ion and size of the ion
- **14.** In the given bonds which one is most ionic

[EAMCET 1980]

- (a) Cs Cl
- (b) Al Cl
- (c) C-Cl
- (d) H-Cl
- **15.** Element *x* is strongly electropositive and *y* is strongly electronegative. Both element are univalent, the compounds formed from their combination will be **[IIT 1980]**
 - (a) x^+y^-
- (b) $x^{-}y^{+}$
- (c) x-y
- (d) $x \to y$
- **16.** In the formation of *NaCl* from *Na* and *Cl* [CPMT 1985]
 - (a) Sodium and chlorine both give electrons
 - (b) Sodium and chlorine both accept electrons
 - (c) Sodium loses electron and chlorine accepts electron
- (d) Sodium accepts electron and chlorine loses electron

Which of the following is an electrovalent linkage

(a) CH₄

17.

(b) $MgCl_2$

[CPMT 1974; DPMT 1984, 91; AFMC 1988]

	(c) SiCl ₄	(d) BF_3		(a)	MNO_3	(b)	$M_2(NO_3)_2$	
18.	Electrovalent compound	ds do not have [CPMT 19	91]	(c)	$M(NO_3)_2$	(d)	$M(NO_3)_3$	
	(a) High M.P. and Lov	v B.P. (b) High dielectric constan	23.	In :	the transition of	Zn atoms	to $7n^{++}$ ions	s there is a
		h B.P. (d) High polarity	20.		rease in the	Zn atoms		CPMT 1972]
19.	Many ionic crystals diss		201	(a)	Number of valen	cy electrons	_	-
	(a) Water is an amphip	[NCERT 198	82]	(b)	Atomic weight			
	(b) Water is a high boi			(c)	Atomic number			4
		ccompanied by a positive heat	of	(d)	Equivalent weigh	nt		4
	solution		24.	Pho	sphate of a meta	al M has the	formula M_3	$(PO_4)_2$. The
	(d) Water decreases th	ne interionic attraction in the crys	tal	forn	nula for its sulpha	te would be		
	lattice due to solva	tion					PMT 1973; M	
20 .		of four elements A, B, C, D are			MSO_4	(b)	$M(SO_4)_2$	
	(A) $1s^2$	(B) $1s^2$, $2s^2 2p^2$		(c)	$M_2(SO_4)_3$	(d)	$M_3(SO_4)_2$	
	(C) $1s^2$, $2s^2 2p^5$	(D) $1s^2$, $2s^2 2p^6$	25.		molecular formu			M is MCl_3 .
	The tendency to form e	lectrovalent bond is largest in		The	formula of its car	bonate woul	d be [CPMT 1987]
		[MNR 1987,	95]	(a)	MCO_3		$M_2(CO_3)_3$	
	(a) A	(b) B		(c)	M_2CO_3	(d)	$M(CO_3)_2$	
	(c) C	(d) <i>D</i>	26.	Sod	ium chloride easi	ly dissolves ir	n water. This is	because
21.	Chloride of metal is Mo	${\it Cl}_2$. The formula of its phosphate	will				[NCERT 1972	; BHU 1973]
	be	[CPMT 1979]			It is a covalent co			
	(a) M_2PO_4	(b) $M_3(PO_4)_2$			Salt reacts with w			
	(c) $M_2(PO_4)_3$	(d) MPO_4			It is a white subst			
22 .	The phosphate of a r	metal has the formula $M\!P\!O_4$. $'$	Γhe	(d)	Its ions are easily	solvated		
	formula of its nitrate wil	l be [CPMT 1971; MP PMT 19	96]					
27 .	When NaCl is dissolve	ed in water the sodium ion become	s	(d)	Atoms of sodium	and chlorine	2	
	[NCER	RT 1974; CPMT 1989; MP PMT 19	99] 33.	The	phosphate of a	metal has t	he formula $\it N$	<i>IHP</i> O ₄ . The
	(a) Oxidized	(b) Reduced		forn	nula of its chloride	e would be		
	(c) Hydrolysed	(d) Hydrated					ICERT 1974; (CPMT 1977]
28 .	Solid NaCl is a bad con	nductor of electricity since		(a)	MCI	(b)	MCl_2	
		[AFMC 19	80]	(c)	MCl ₃	(d)	M_2Cl_3	
	(a) In solid NaCl ther		34.	A n	umber of ionic co	mpounds e.g	. AgCl, CaF ₂	, BaSO ₄ are
	(b) Solid NaCl is cova			insc	luble in water. Th	nis is because	[N	CERT 1984]
	(c) In solid NaCl ther			(a)	Ionic compounds	s do not disso	olve in water	
29.	(d) In solid <i>NaCl</i> ther Favourable conditions f			(b)	Water has a high	dielectric co	nstant	
2).		s, large cation, small anion		(c)	Water is not a go	_		
		s, small cation, large anion		(d)	These molecules		eptionally higl	n alternative
		s, large cation, small anion	35.	V I 71_	forces in the lattic		- d: l	C: and E
	(d) Low charge on ion	s, small cation, large anion	33.	VVII	at is the nature of		nding between I P PMT 1987 ;	
30 .	The sulphate of a met	al has the formula $M_2(SO_4)_3$.	Γhe	(a)	Covalent		Ionic	01111 1570
	formula for its phospha	te will be			Coordinate		Metallic	
		IT 1982; CPMT 1972; MP PMT 19	⁹⁵] 36.	Wh	ich one of the foll	owing compo	ound is ionic	
	(a) $M(HPO_4)_2$	(b) $M_3(PO_4)_2$						[MNR 1985]
	(c) $M_2(PO_4)_3$	(d) <i>MP</i> O ₄		(a)	KCl	(b)	CH_4	
31.	Ionic bonds are usually	formed by combination of eleme	ents	(c)	Diamond	(d)	H_2	
	with	[CBSE PMT 1993; MP PMT 199	^{94]} 37.	Wh	ich of the followin		-	ent linkage
`	(a) High ionisation pot	ential and low electron affinity	07.	****	ion of the following	g compound		983, 84, 93]
	- · · ·	ential and high electron affinity		(a)	CH ₃ Cl	(b)	NaCl	, ,1
		tential and high electron affinity		(c)	CH ₄	, ,	Cl_2	
00	- · · ·	ential and low electron affinity		. ,	-		=	Dtl 10011
32 .	Molten sodium chloric presence of	de conducts electricity due to			ionic compound is	-		Bihar 1981]
	(a) Free electrons	[IIT 198	-1]		Good electrolyte Non-electrolyte		Weak electrol Neutral	yıe
	(h) Free ions		39		Tron-electrolyte at metals combine	` '		al atom tends

to

a

[AMU 1982]

(c) Free molecules

	(a) Lose electrons (b) Gain electrons	52 .	An element X with the electronic configuration $1s^2, 2s^2 2p^6, 3s^2$ would be expected to form the chloride
	(c) Remain electrically neutral		
	(d) None of these		with the formula [JIPMER 2000]
40 .	Chemical formula for calcium pyrophosphate is $Ca_2P_2O_7$.		(a) XCl_3 (b) XCl_2
10.	The formula for ferric pyrophosphate will be [NCERT 1977]		(c) XCI (d) X_2CI
		53 .	Two element have electronegativity of 1.2 and 3.0. Bond
			formed between them would be [CPMT 1982; DCE 2000]
	(c) $Fe_4(P_2O_7)_3$ (d) Fe_3PO_4		(a) Ionic (b) Polar covalent
41.	Among the bonds formed by a chlorine atom with atoms of		(c) Co-ordinate (d) Metallic
	hydrogen, chlorine, sodium and carbon, the strongest bond	54 .	Which of the following is least ionic [MP PET 2002]
	is formed between [EAMCET 1988; MP PMT 1993]		(a) C_2H_5Cl (b) KCl
	(a) $H-Cl$ (b) $Cl-Cl$		(c) $BaCl_2$ (d) $C_6H_5N^+H_3Cl^-$
	(c) $Na - Cl$ (d) $C - Cl$		
42 .	Which of the following is least soluble [CPMT 1989]	55.	Which type of bonding exists in Li_2O and CaF_2
	(a) BeF_2 (b) SrF_2		respectively [RPET 2000]
	(c) CaF_2 (d) MgF_2		(a) Ionic, ionic (b) Ionic, covalent
43.	Which of the following halides has maximum melting point		(c) Covalent, ionic (d) Coordinate, ionic
	(a) NaCl (b) NaBr	56 .	An atom with atomic number 20 is most likely to combine
	(c) Nal (d) NaF		chemically with the atom whose atomic number is
44.	The high melting point and insolubility in organic solvents of		[BHU 2000]
	sulphanilic acid are due to its structure. [IIT 1994]		(a) 11 (b) 14
	(a) Simple ionic (b) Bipolar ionic		(c) 16 (d) 10
	(c) Cubic (d) Hexagonal	57.	Bond formed in crystal by anion and cation is
45 .	Out of the following, which compound will have	4	[CBSE PMT 2000] (a) Ionic (b) Metallic
	electrovalent bonding		(c) Covalent (d) Dipole
	(a) Ammonia (b) Water	58 .	Atoms or group of atoms which are electrically charged are
	(c) Calcium chloride (d) Chloromethane	30.	known [UPSEAT 2001]
46 .	The force which holds atoms together in an electrovalent		(a) Anions (b) Cations
	bond is) -	(c) Ions (d) Atoms
	(a) Vander Waal's force	59.	Which one is the strongest bond [Pb. PMT 2001]
	(b) Dipole attraction force	05.	(a) $Br-F$ (b) $F-F$
	(c) Electrostatic force of attraction		(c) $Cl - F$ (d) $Br - Cl$
	(d) All the above	60.	The interionic attraction depends on interaction of
47 .	The main reaction during electrovalent bond formation is	00.	[Kerala CET (Med.) 2002]
	(a) Redox reaction (b) Substitution reaction		(a) Solute-Solute (b) Solvent-Solvent
	(c) Addition reaction (d) Elimination reaction		(c) The charges (d) Molecular properties
48 .	Electrovalent compounds are [CPMT 1996]	61.	Which of the following compounds is ionic
	(a) Good conductor of electricity	01.	[UPSEAT 2002]
	(b) Polar in nature		(a) KI (b) CH ₄
	(c) Low M.P. and low B.P.		•
	(d) Easily available		(c) Diamond (d) H_2
49 .	Ionic compounds do not have [RPMT 1997]	62 .	Which of the following pairs of species has same electronic
	(a) Hard and brittle nature		configuration [UPSEAT 2002]
	(b) High melting and boiling point		(a) Zn^{2+} and Ni^{2+} (b) Co^{+3} and Ni^{4+}
	(c) Directional properties		(c) Co^{2+} and Ni^{2+} (d) Ti^{4+} and V^{3+}
	(d) Soluble in polar solvents	63.	The energy that opposes dissolution of a solvent is
50 .	Highest melting point would be of [RPMT 1999]		[CPMT 2002]
1	(a) He (b) CsCl		(a) Hydration energy (b) Lattice energy
	(c) NH ₃ (d) CHCl ₃		(c) Internal energy (d) Bond energy
51 .	What is the effect of more electronegative atom on the	64.	Which of the following has highest melting point
_•	strength of ionic bond [AMU 1999]		[RPET 2003]
	(a) Decreases (b) Increases		(a) $BeCl_2$ (b) $MgCl_2$
	(c) Decreases slowly (d) Remains the same		(c) $CaCl_2$ (d) $BaCl_2$
	• • •	65 .	Which of the following statements is not true for ionic
			compounds [RPET 2003] (a) High melting point

	(b) Least lattice energy			(d)	Equally shared in be	tween the	e two	
	(c) Least solubility in org	ganic compounds	10.	For	the formation of co	ovalent b	ond, the difference in th	ıe
	(d) Soluble in water	- -		valı	ue of electronegativitie	es should	be [EAMCET 1982	2]
66.	` '	d containing [MADT Bihar 1981]		(a)	Equal to or less than	1.7 (b)	More than 1.7	
	(a) Electrovalent bond	(b) Covalent bond			1.7 or more		None of these	
	(c) Coordinate bond	(d) Hydrogen bond	11.	Wh	ich type of bond is fo	rmed bety	ween similar atoms	
67	, ,				Ionic		Covalent	
67.	Which of the following hy			` '	Coordinate	٠,	Metallic	
	(a) CaH_2	(b) BaH ₂	12.	. ,	valent compounds are			
	(c) SrH_2	(d) BeH_2		•	one compounds on	gerreran.	[CPMT 1987	7 1
68 .	Which of the following co	nduct electricity in the fused state		(a)	Soluble	(b)	Insoluble	•
	······································	[Roorkee 2000]			Dissociated	٠,	Hydrolysed	
	(a) BeCl ₂	(b) MgCl ₂	13.	. ,			t compound [AIIMS 1982	71
		-	10.	(a)	ICI		NH ₃	
	(c) SrCl ₂	(d) BaCl ₂		. ,				
	_			(c)	BCl_3	(d)	PCl ₃	
	<u>Pa</u>	<u>art - 2</u>	14.	Wh	ich among the follow	ving elen	nents has the tendency t	o
1	The real angre of authors in	culphysic acid is INCERT 10741		forr	n covalent compound	ls		
1.	The valency of sulphur in	-		(a)	Ва	(b)	Ве	
	(a) 2	(b) 4		(c)	Mg	(d)	Ca	
_	(c) 6	(d) 8	15.	Sili	con has 4 electrons in	n the oute	ermost orbit. In forming th	1e
2 .		involved in the bond formation of		bor			[EAMCET 1981	
	N_2 molecule			(a)	It gains electrons	(b)	It loses electrons	•
	[IIT 1980; CPN	IT 1983, 84, 85; CBSE PMT 1992]			It shares electrons	` '	None of these	
	(a) 2	(b) 4	16.				vhen two hydrogen atom	ne
	(c) 6	(d) 10	10.		nd with each others	occurs w	viien iwo nyarogen aion	13
3 .	The electronic configura	tion of four elements are given in			Potential energy is lo	word		
	brackets	_			Kinetic energy is low			
	$L(1s^2, 2s^22p^1), M(1s^2,$	$2s^2 2n^5$			Electronic motion ce			
	, , ,	,			Energy is absorbed	ases		
	$Q(1s^2, 2s^2 2p^6, 3s^1), R$	$(1s^2, 2s^2 2p^2)$	17				. 1 . 1 .	
	The element that would	d most readily form a diatomic	17.				t character between nor	
	molecule is				allic elements is form		[NCERT 1982	-1
		[NCERT 1983]		. ,	Between identical at			
	(a) Q	(b) <i>M</i>		(b)	Between chemically			
	(c) R	(d) L		(c)	Between atoms of w	idely diffe	erent electronegativities	
4.	In covalency [CP	MT 1974, 76, 78, 81; AFMC 1982]		(d)	Between atoms of th	ie same si	ize	
	(a) Electrons are transfer	red	18.	Am	ongst the following co	ovalent bo	onding is found in	
	(b) Electrons are equally	shared					[CPMT 1973	3]
	(c) The electron of one a	tom are shared between two atoms		(a)	Sodium chloride	(b)	Magnesium chloride	
	(d) None of the above			(c)	Water	(d)	Brass	
5 .	Which compound is high	est covalent	19.	Indi	icate the nature of bo	nding in o	diamond	
	(a) LiCl	(b) LiF				_); BHU 1996; KCET 2000)1
	(c) LiBr	(d) LiI		(a)	Covalent		Ionic	•
6.	The nature of bonding in				Coordinate	, ,	Hydrogen	
		[DPMT 1986; CPMT 1986]	20.		et rule is not valid for		-	
	(a) Covalent	(b) Ionic	20.	Oct	et rule is not valid for	ine moie		-1
	(c) Metallic	(d) Coordinate		()	00	(1.)	[IIT 1979; MP PMT 1995	3]
7 .		g substances has giant covalent		(a)	CO_2	(b)	H_2O	
	structure	[DPMT 1985, 86; NCERT 1975]		(c)	CO	(d)	O_2	
	(a) Iodine crystal	(b) Solid CO_2	21.	Wh	ich of the following co	mpound	s are covalent	
	(c) Silica	(d) White phosphorus	21.	**11	ien of the following ed	mpound	[IIT 1980; MLNR 1982	91
8.	With which of the given p			(a)	Н.	(b)	CaO	-1
G.		-			H_2			
	(a) $HgCl_2$, C_2H_2	(b) $HgCl_2$, $SnCl_4$		(c)	KCI	(d)	Na ₂ S	
•	(c) C_2H_2 , NO_2	(d) N_2O and NO_2	22.	Indi	icate the nature of bo	nding in	CCl_4 and CaH_2	
9.		forms a bond between two similar				3		21
	non-metallic atoms will be	[IIT 1986]					[NCERT 1973	[د
				1-1	Carralant in COI	ا - 1 - اسم	and and in Call	
	(a) Dissimilar shared bet	ween the two			Covalent in CCl_4 a			
		ween the two from one atom to other			Covalent in CCl_4 a Electrovalent in both			

24.	Which is the most covalent		[AFMC 1982]		(c)	High melting points and low boiling points
	(a) $C-O$	(b) $C-Br$				High melting points and high boiling points
	(c) $C-S$	(d) $C-F$		36.		e interatomic distances in H_2 and Cl_2 molecules are 74
25 .	The covalent compound HC	I has the ionic c	haracter as	00.		In 198 pm respectively. The bond length of HCl is
]	EAMCET 1980]		and	[MP PET 1993]
	(a) The electronegativity of	hydrogen is grea	ater than that of		(a)	272 pm (b) 136 pm
	chlorine					124 pm (d) 248 pm
	(b) The electronegativity o chlorine	f hydrogen is e	qual to that of	S		ution s
	(c) The electronegativity of hydrogen	chlorine is grea	ter than that of			part - 1
	(d) Hydrogen and chlorine	are gases		1.	(b)	$NaCl$ is ionic crystal so it is formed by Na^+ and Cl^-
26 .	The correct sequence of is	ncreasing covale	ent character is			ions.
	represented by	[CE	SE PMT 2005]	2.	(a)	Bond formation is always exothermic. Compounds of
	(a) LiCl < NaCl < BeCl ₂	(b) $BeCl_2 < N$	laCl < LiCl			sodium are ionic.
	(c) NaCl < LiCl < BeCl ₂	(d) $BeCl_2 < L$	iCl < NaCl	3.		According to Fajan's rule ionic character is less.
27 .	Bond energy of covalent O-	– H bond in wate	er is	4.	(c)	Valencies of L , Q , P and R is -2 , -1 , $+1$ and $+2$
			EAMCET 1982]			respectively so they will form P_2L , RL , PQ and RQ_2 .
	(a) Greater than bond energ	gy of H – bond		5.	(c)	Electrovalent compounds are good conductor of heat
	(b) Equal to bond energy of	fH-bond				and electricity in molten state or in aqueous solution.
	(c) Less than bond energy of	of H – bond		7,	(d)	•
	(d) None of these					energy of cation, electron affinity of anion and on lattice energy.
28 .	Solid CH ₄ is	4	[DPMT 1983]	8.	(h)	Because CsF is electrovalent compound.
	(a) Molecular solid	(b) Ionic solid		9.	(c)	NaCl is formed by electrovalent bonding.
	(c) Pseudo solid	(d) Does not e	exist	10.	` '	Valency of metal is + 2 by formula <i>MO</i> so its phosphate
29 .	A covalent bond is likely to b			10.	(u)	would be $M_3(PO_4)_2$ because valency of $[PO_4]$ is -3 .
	which		MP PMT 1987]	11.	(h)	Li, Na and K are alkali metals with low ionization energy
	(a) Have similar electronega			11.	(0)	and one electron in their outermost shell so they will
	(b) Have low ionization ene					form cation easily.
	(c) Have low melting points			12.	(a)	Melting point and boiling point of electrovalent
00	(d) Form ions with a small of					compounds are high due to strong electrostatic force of
30.	The bond between two iden of electrons	tical non-metal a	toms has a pair [CPMT 1986]			attraction between the ions.
	(a) Unequally shared between	en the two	[CFM1 1980]	13.	(d)	The value of lattice energy depends on the charges
	(b) Transferred fully from or		<i>e</i> r			present on the two ions and distance between them. It
	(c) With identical spins					shell be high if charges are high and ionic radii are small.
	(d) Equally shared between	them		14.	(a)	Cs is more electropositive.
31.	The valency of phosphorus is		[DPMT 1984]	15.		X loses electron, Y gains it.
	(a) 2	(b) 5		16.		Formation of $NaCl$ occurs by Na_{ion}^+ and Cl_{ion}^- .
\	(c) 4	(d) 1				
32 .	Which of the following substa	ances has covale	nt bonding	17.	(0)	MgCl ₂ has electrovalent linkage because magnesium is
			[AMU 1985]	10	(s)	electropositive metal while chlorine is electronegative.
	(a) Germanium	(b) Sodium ch	loride	18.	(a)	Electrovalent compounds generally have high m.pt and high b.pt due to stronger coulombic forces of attractions.
	(c) Solid neon	(d) Copper		19.	(d)	Water is a polar solvent so it decreases the interionic
33 .	The covalency of nitrogen in	HNO_3 is	[CPMT 1987]	17.	(u)	attraction in the crystal lattice due to solvation.
	(a) 0	(b) 3				
	(c) 4	(d) 5				

34. Hydrogen chloride molecule contains a

(a) Covalent bond

35.

(c) Coordinate bond

compounds generally have

[CPMT 1984]

(b) Double bond

As compared to covalent compounds, electrovalent

(a) Low melting points and low boiling points(b) Low melting points and high boiling points

(d) Electrovalent bond

[CPMT 1990, 94; MP PMT 1997]

(c) Covalent in both CCl_4 and CaH_2

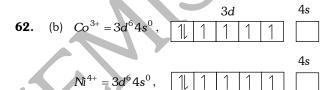
(c) \dot{X} : (d) \ddot{X} .

symbol for the element is

(a) X.

23.

(d) Electrovalent in CCl_4 and covalent in CaH_2


If the atomic number of element X is 7, the best electron dot

(b) . X .

[NCERT 1973; CPMT 2003]

- **20.** (c) Element C has electronic structure $1s^2, 2s^22p^5$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond.
- **21.** (b) Since the chloride of a metal is MCl_2 therefore metal 'M' must be divalent i.e. M^{2+} . As a result the formula of its phosphate is $M_3(PO_4)_2$.
- **22.** (d) In MPO_4 the oxidation state of M is +3. Hence, the formula of nitrate is $M(NO_3)_3$.
- **23.** (a) Ion is formed by gaining or losing electrons. To form cation electron are lost from the valency shell, so Zn atoms to Zn^{++} ions there is a decrease in the no. of valency electron.
- **24.** (a) $M_3(PO_4)_2$ means M is divalent so formula of its sulphate is MSO_4 .
- **25.** (b) As the molecular formula of chloride of a metal M is MCl_3 , it is trivalent so formula of its carbonate will be $M_2(CO_3)_3$.
- **26.** (d) Sodium chloride is electrovalent compound so it dissolves in water which is a polar solvent.
- **27.** (d) When sodium chloride is dissolved in water, the sodium ion is hydrated.
- **30.** (d) Yet the formula of sulphate of a metal (M) is $M_2(SO_4)_3$, it is M^{3+} ion so formula of its phosphate would be MPO_4 .
- **32.** (b) Molten sodium chloride conducts electricity due to the presence of free ions.
- 33. (b) The phosphate of a metal has the formula MHPO₄ it means metal is divalent so its chloride would be MCl₂.
- **34.** (d)
- **35.** (b) Cs is highly electropositive while F is highly electronegative so they will form ionic bond.
- **37.** (b) *Na* is highly electropositive while *Cl* is highly electronegative so they will form ionic bond.
- **38.** (a) Ionic compounds are good conductors of heat and electricity so they are good electrolyte.
- **39.** (a) Metal tends to lose electrons due to low ionization energy.
- **40.** (c) As the formula of calcium pyrophosphate is $Ca_2P_2O_7$ means valency of pyrophosphate radical is 4 so formula of ferric pyrophosphate is $Fe_4(P_2O_7)_3$.
- **41.** (c) M-X bond is a strongest bond so between Na-Cl is a strongest bond.
- **42.** (b) The solubility order is : $BeF_2 > MgF_2 > CaF_2 > SrF_2$ so SrF_2 is least soluble.
- **43.** (d) *NaF* has maximum melting point, melting point decreases of sodium halide with increase in size of halide their bond energy get lower.
- **44.** (b) Sulphanilic acids have bipolar structure so their melting point is high and insoluble in organic solvents.
- **45.** (c) CaCl₂ will have electrovalent bonding because calcium is electropositive metal while chlorine is electronegative so they will combined with electrovalent bond.
- **47.** (a) Electrovalent bond is formed by losing electrons from one atom and gaining electron by other atom *i.e.* redox reaction.

- **48.** (b) Electrovalent compound are polar in nature because they are formed by ions.
- **50.** (b) *CsCl* has ionic bonding.
- **51.** (b) As soon as the electronegativity increases, ionic bond strength increases.
- **52.** (b) This X element is a second group element so its chloride will be XCl_2 .
- **53.** (a) When electronegativity difference is from 1.7 to 3.0. This bond is called as ionic bond.
- **54.** (a) Ethyl chloride is an organic compound so it will be covalent.
- **55.** (a) Lithium oxide and calcium fluoride show ionic characters.
- **57.** (a) Generally cation and anion form ionic bond.
- 58. (c) Those atoms which contain +ve and -ve sign are known as ion.
- **59.** (a) Generally *Br-F* contain maximum electronegativity difference compare to other compound.
- **61.** (a) Due to greater electronegativity difference.

- **64.** (d) BaCl₂ contain higher ionic character.
- **66.** (a) Electrolytes are compound which get dissociated into their ion in water so it contains electrovalent bond.
- **67.** (abc) CaH_2 , BaH_2 , SrH_2 are ionic hydride.
- **68.** (bcd) Generally $MgCl_2$, $SrCl_2$, $BaCl_2$ are ionic compounds so they conduct electricity in fused state.

Part -2

- **2.** (c) In N_2 molecule each Nitrogen atom contribute $3e^-$ so total no. of electron's are 6.
- **3.** (b) Non-metals readily form diatomic molecules by sharing of electrons. Element $M(1s^2 2s^2 2p^5)$ has seven electrons in its valence shell and thus needs one more electron to complete its octet. Therefore, two atoms share one electron each to form a diatomic molecule (M_2)

- (d) Covalent character depend on the size of cation and anion
- **6.** (a) In graphite all carbon atoms are sp^2 -hybridised and have covalent bond.
- **7.** (c) Silica has tendency to form long chain covalent structure such as carbon so it has giant covalent structure.
- **8.** (a) All have linear structure. O = C = O, Cl Hg Cl, HC = CH

$$O - C - O$$
, $C_1 - H_2 - C_1$, $H_2 = C_1$

- **9.** (d) Similar atoms form covalent bond.
- **10.** (a) Covalent bond forms when electronegativity difference of two atom is equal to 1.7 or less than 1.7
- **11.** (b) Similar atoms form covalent bond.

Dharnidhar : Mangaltirth Tower, Above Gopi Dairy, Dharnidhar Circle, Vasna. Satellite : Ashray Tower, B/h. Madhur Hall, Anandnagar Cross Road, Nr. Mahadev Temple, Satellite.

- **12.** (b) Water is a polar solvent while covalent compounds are non-polar so they usually insoluble in water.
- **13.** (c) BCl_3 is electron deficient compound because it has only '6' electrons after forming bond.
- **14.** (b) Due to its small size and 2 electrons in s-orbital *Be* forms covalent compound.
- **18.** (c) H_2O will formed by covalent bonding.
- **21.** (a) Two identical atoms are joined with covalent bond so H_2 will be covalent.
- 23. (c) Element 'X' has atomic no. 7 so its electronic configuration will be 2, 5. So its electron dot symbol would be : \dot{X} .
- **24.** (c) *C-S* will be most covalent. Covalent character depend on the size of cation and anion.
- **25.** (c) *HCl* has ionic character yet it has covalent compound because electronegativity of chlorine is greater than that of hydrogen.
- **26.** (c) Order of polarising power $Be^{++} > Li^+ > Na^+$ Hence order of covalent character $BeCl_2 > LiCl > NaCl$.
- **31.** (b) Valency of phosphorus in H_3PO_4 is supposed 'x' then 3+x-8=0, x-5=0, x=5.
- **33.** (d) $(+1) + x + 3(-2) = 0 \Rightarrow 1 + x 6 = 0 \Rightarrow x = 6 1 = 5$.
- **34.** (a) *HCl* molecule has covalent bond.
- **35.** (d) Electrovalent compounds have high melting point and high boiling point.

Part 1

1	b	2	а	3	а	4	С	5	С
6	d	7	d	8	b	9	С	10	d
11	b	12	а	13	d	14	а	15	а
16	С	17	b	18	а	19	d	20	С
21	b	22	d	23	а	24	а	25	b
26	d	27	d	28	С	29	а	30	d
31	b	32	b	33	b	34	d	35	b
36	а	37	b	38	а	39	а	40	С
41	С	42	b	43	d	44	b	45	С
46	С	47	а	48	b	49	С	50	b
51	b	52	b	53	а	54	а	55	а
56	С	57	а	58	С	59	а	60	С
61	а	62	b	63	d	64	d	65	b
66	а	67	abc	68	bd				

Part 2

1	С	2	С	3	В	4	b	5	d
6	а	7	С	8	а	9	d	10	a
11	b	12	b	13	С	14	b	15	С
16	a	17	a	18	С	19	а	20	b
21	а	22	а	23	С	24	С	25	С
26	С	27	а	28	а	29	а	30	d
31	b	32	a	33	d	34	а	35	d
36	b	37	d	38	С	39	d	40	С