AXAY SIR'S CHEMISTRY 11-12 CHEMISTRY + JEE/NEET Ph:9426340530,9429131232

11-SCI SEMESTER - 1

CH- 5,6,7 (ANSWERS)

per the X-ray analysis? (a) Three dimensional

What type of geometry is observed in ice, as

Time – 2 hrs (9)

Marks -100

(1) Elements of which group cannot form saline hydrides? (a) Group 1 (b) Group 2 (c) Both (a) and (b) (d) none Ans: (d) Select the polymeric hydride (2) (a) BeH_2 (b) LiH (c) NaH (d) TIH Ans: (a) Hint: BeH₂ & MgH₂ are polymeric hydrides. NiH, PdH etc. (3) Which of the following is a non-stoichiometric hydride? (a) Ionic (b) Metallic (c) Molecular (d) all the three (b) Ans: Which of the following is an electron deficient (4) molecular hydride? (a) LiH (b) VH (c) CH_4 (d) B_2H_6 Ans: (d) Hint: $VH \rightarrow$ metallic hydrides $CH_4 \rightarrow Electron precise hydrides$ $B_2H_6 \rightarrow$ Electron deficient hydrides Elements of s-block forms which type of (5) hydrides? (a) Saline (b) Metallic (c) Interstitial (d) Molecular Ans: (a) (6) What hydrides are formed by the elements of p-block? (a) Saline (b) Metallic (c) Interstitial (d) Molecular Ans: (d) Hint: Saline \rightarrow s-block d-block as well as p-block Metallic \rightarrow M Which element of 6^{lh} group can form (7) hydrides? (a) Cr (b) Mo (c) W (d) Sg Ans: (a) Metallic & non-metallic elements of p $olecular \rightarrow$ block (8) What is the hybridization of oxygen atom in water molecule? (b) sp^2 (a) sp (c) sp^3 (d) None (c)

Ans:

	(b) Trigonai pyramidal
	(c) Tetrahedral
	(d) Octahedral
Ans:	(c)
Hint:	By X-ray analysis, it is observed that in crystal
	structure of ice around each oxygen atom
	tetrahedral structure is formed.
(10)	What is the concentration of water at 25 °C?
	(a) 1 mol/lit (b) 5.55 mol/lit (c)
55.55 n	nol/lit (d) 0 mol/lit
Ans:	(c)
(11)	Water reduces fluorine to
	(a) F ₂ (b) F
	(c) F ⁺ (d) F ⁻
Ans:	(d)
Hint:	$2F_2 + 2H_2O \rightarrow 4H_{(aq)}^+ + 4F_{(aq)}^- + O_{2(g)}$
	Reducing agent reduces flourine to F ⁻
(12)	BaCl ₂ is type of salt.
(12)	(a) Ionic (b) Metallic
	(c) Complex (d) Molecular
Ans:	(a) Ionic
(13)	Temporary hardness is caused due to;
()	(a) $CaSO_4$ (b) $CaCl_2$
	··· · · 2
	(c) $CaCO_3$ (d)
	$Ca(HCO_3)_2$
Ans:	(d)
(14)	The temporary hardness of water due to
. ,	calcium bicarbonate can be removed by adding:
	(a) $CaCO_3$ (b) $CaCl_2$
	(c) HCl (d) $Ca(OH)_2$
Ans:	(d)
(15)	Which of the following is responsible for
	hardness?
	(a) $CaSO_4$ (b) $Al_2(SO_4)_3$
	(c) $CuSO_4$ (d) $FeSO_4$
Ans:	(a)
(16)	What type of hardness of water cannot be
(10)	easily removed by boiling of water?
	(a) Temporary (b) Permanent (c)
Saturat	
Ans:	(b)
	In temporary hardness, the salt of Ca and Mg

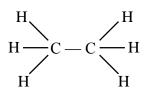
dissolved in water are Ca & Mg hydrogen carbonates. This type of hardness can be removed by boiling water.

(17)	What is obtained	when $Mg(HCO_3)_2$ is	
	thermally decomposed		
	(a) CO and dissolved ca	rbonate (b) CO ₂	
and in:	soluble carbonate	(d)	
None	(c) C and metal hydride	e (d)	
Ans:	(b)		
(18)	D_2SO_4 is obtained on	reaction of	
(10)	2 .		
	2 2	$D_3 + H_2O$ (c) $SO_2 + D_2O$	
	(d) $SO_3 + D_2C$)	
Ans:	(d)		
(19)	CNG in cars?	lihydrogen is mixed with	
	(a) 1%	(b) 2%	
	(c) 5%	(d) 8%	
Ans:	(c)		
(20)	The name hydrogen wa	as proposed by:	
	(a) Lavoisier	(b) Rutherford	
_	(c) Henry Cavendish	(d) Scheele	
Ans: Hint:	(a)	nama hudragan	
(21)		g will give a violet colour	
()	flame?		
	(a) Na	(b) K	
	(c) Cs	(d) Fr	
Ans:	(b)		
(22)		d in making photo cells	
	because: (a) of high electronega	tivity	
	(b) high electron effinit	-	
	(c) very high ionization	•	
low io	nization energy		
Ans:	(d)		
Hint:		n energy, they can lose	
	ons easily.	act daas aasium siya?	
(23)	What colour of name t (a) Golden	(b) Violet	
	(c) Crimson red (d) Blu		
Ans:	(d)	-	
(24)	NaCl forms an ionic cor	mpound because of;	
	(a) very small volume		
	(b) very high electronegativity		
	(c) very high electroposition(d) very high ionization	-	
Ans:	(c) very mgn ionization	lenergy	
(25)	• •	alkali metal react with	
()	water and gives		
	(a) Weak acidic (b) we		
Strong	acidic (d) strong basi	C	
Ans:	(d)		
(26)	Which of the following		
	(a) Na_2O_2	(b) K_2O_2	
	(c) Li_2O_2	(d) KO_2	
Ans:	(c)		
Hint:	-	stable monoxides. Higher	
oxides	of lithium are unstable.		

(27)	Which of the following is insoluble in water? (a) LiF (b) Li_2CO_3		
	(c) $\text{Li}_3(\text{PO}_4)$ (d) All of above		
Ans:	(d)		
(28)	Which of the following is electrolysed at 500°C temperature for extraction of Li metal?		
	(a) 55% LiCl + 45% KCl (b) 45%		
LiCl + 5	55% KCI		
	(c) 60% LiCl + 40% KCl (d) 90%		
Ans:	10% KCl (a)		
(29)	is the molecular formula of potash		
	magnesia.		
	(a) $K_2SO_4.MgSO_4.2H_2O$		
	(b) $K_2SO_4.MgSO_4.6H_2O$		
	(c) $CaSO_4.K_2SO_4.6H_2O$		
	(d) $K_2SO_4.MgSO_4.10H_2O$		
Ans: (30)	(b) How can the setting time of plaster of paris be		
(50)	increased?		
	(a) by adding sugar		
	(b) by adding salt		
	(c) by adding Epsom salt(d) By adding more water		
Ans:	(b)		
(31)	Select the component of Portland cement		
	(a) $\operatorname{Ca}_2\operatorname{SiO}_4$ (b) $\operatorname{Ca}_3\operatorname{SiO}_5$		
-	(c) $Ca_3Al_2O_6$ (d) All of above		
Ans: (32)	(d) State the molecular formula of chile salt petre.		
()	(a) Na_2SO_4 (b) $NaHSO_4$		
	(c) NaNO ₃ (d) Na ₂ S ₂ O ₅		
Ans:	(c)		
Hint:	Child salt petre is $NaNO_3$.		
(33)	What is produced on passing $\ensuremath{\mathrm{CO}}_2$ gas through		
	an aqueous solution of Na_2CO_3 ?		
	(a) NaOH (b) $NaHCO_3$		
	(c) OH (d) H_2O		
Ans:	(b)		
Hint:	$Na_2CO_3 + H_2O + CO_2 \rightarrow 2NaHCO_3$		
(34)	Why do alkali metals give coloured flame in flame test?		
	(a) Due to their low melting point		
	(b) They have only one electron in valence shell		
	(c) Due to their softness(d) As they have low ionization energy		
Ans:	(d)		
(35)	Which of the following is the smallest in size?		
	(a) Mg (b) Be (c) Li (d) Na		
Ans:	(b)		
(36)	Which of the following reacts directly with		
	nitrogen to form nitride?		

Ans: (b)

 $6Li + N_2 \rightarrow 2Li_3N$ Hint:


Which is the correct configuration of excited (37) atom of carbon? (a) $1s^2 2s^2 2p^{-1} 2p^{-1} 2p^{-0}$

(c)
$$1s^{2} 2s^{2} 2p_{x}^{-2} p_{y}^{-2} 2p_{z}^{-1}$$

(b) $1s^{2} 2s^{1} 2p_{x}^{-1} 2p_{y}^{-1} 2p_{z}^{-1}$
(c) $1s^{2} 2s^{2} 2p_{x}^{-1} 2p_{y}^{-1} 2p_{z}^{-1}$
(d) $1s^{2} 2s^{2} 2p_{x}^{-1} 2p_{y}^{-0} 2p_{z}^{-0}$

Hint: In excited state, carbon has 4 unpaired electrons one each is 2s, $2p_x$, $2p_y$, $2p_z$ orbitals.

(38)	How n	nany	σ – bonds	are are	present	in	а
	molecu	le of et	thane?				
	(a) 1		(b) 4			
		(c) 6			(d) 7		
Ans.	(d)						

Hint:

	possess 1[C–C] σ bond and 6[C–H] σ bonds i.e.			
total 7	σ bonds.			
(39)	How many σ -bonds are j	present in a molecule of		
	ethyne?			
	(a) 1	(b) 2		
	(c) 3	(d) 4		
Ans.	(c)			
Hint:	$H-C \equiv C-H$, has 2[C-	–C] π bonds		
	and 1 [C	C–C] σ bonds		
		–H] σ bonds.		
(40)	The orbitals formed by sp^2 hybridization are			
X = J	arranged in what shape?			
	(a) Linear			
	(b) Planar trigonal			
	(c) Square planar			
	(d) Trigonal bipyramidal			
Ans.	(b)			
Hint:	$sp^2 \rightarrow$ Planar trigonal geometry.			
(41)	What is the bond angle			

ппп.	$sp \rightarrow Planar ungoniar geometry.$
(11)	What is the hand angle observed in

having sp hybridization? (a) 90⁰ (b) 120º

(d) 180º

(d) S

(c) 109º28' Ans. (d)

(c) P_z

Hint: sp hybridization
$$\rightarrow$$
 Linear geometry \rightarrow 180°
(42) Which of the following orbital is not involved in

(42) Which of the following orbital is not involved
$$sp^2$$
 hybridization?
(a) P_x (b) P_y

(43) How many σ and π bonds are present in a molecule of ethyne? (a) 3, 3 (b) 3, 1 (d) 3, 2 (c) 2, 1 Ans. (d) (44) Which functional group is present in a molecule of methoxy ethane? (a) Ester (b) amide (c) Ether (d) alcohol Ans. (c) Hint: Oxy group is for ethers. N, N Dimethyl ethanamine is what type of (45) amine? (a) 1º (b) 2º (c) 3º (d) 4º Ans. (c) Hint: Here Nitrogen atom is linked with 3 carbon atoms. (46) The presence of a ketone group in the organic molecule can be determined by: (a) –CHO (b) -COOH (c) –O– (d) -CO-(d) Ans. (47) Pentane-1-ol and pentane-3-ol are: (a) Chain isomers (b) Position isomers (c) Functional group isomers (d) Metamers (b) Ans. IUPAC name of $CH_3COOCH_2CH_3$ is: (48) (a) Ethyl ethanoate (b) Methyl ethanoate (c) Ethyl acetate (d) Metyl acetate Ans. (a) (49) Which of the following will act as Lewis acid? (a) SO_3H^+ (b) : X^{-} (c) $: NH_2$ (d) None Ans. (a) $SO_{3}H^{+}$ being an electrophile is a Lewis acid. Hint: Which of the following will produce maximum (50) inductive effect in an organic compound? (a) Cl (b) Br (c) F (d) I Ans. (c) More electronegativity, high inductive effect. Hint:

Ans. (c)

PART-B 2 markers

(1) When zeolite is treated with hard water, sodium ions of zeolite get exchanged with?

> (a) H^+, SO_4^{2+} (b) Ca^{2+}, Mg^{2+} (c) H^+, Ca^{2+} (d) Only Mg^{2+}

(2) Hint:

 $Na_{2}Z_{(s)} + M_{(aq)}^{2+} \rightarrow 2Na_{(aq)}^{+} + MZ \qquad (M = Ca^{2+} \text{ or } Mg^{2+})$ 30 volume hydrogen peroxide means:

(a) 30% $\,H_2^{}O_2^{}\,\text{by volume}$

(b) 30 g of $\,H_2O_2$ solution contains 1 g of $\,H_2O_2$

(c) 1 \mbox{cm}^3 of solution liberates 30 \mbox{cm}^3 of dioxygen

(d) 30 cm
3
 of solution contains 1 mole of $m H_2O_2$

Ans: (b)

Hint: This is as per the definition of volume strength of hydrogen peroxide.

(3)	As compared to potassium; Sodium has		
	(a) less electronegativity		
	(b) more ionisation potential		
	(c) larger atomic radius	(d)	

lower melting point

```
Ans: (b)
```

Hint: lonization energy decreases down the group(4) Which of the following carbonates decomposes readily?

(a) Li_2CO_3 (b) Na_2CO_3 (c) K_2CO_3 (d) Rb_2CO_3

Hint: Li_2CO_3 is highly unstable. It is not known in solid state.

- (5) Which of the following is false for alkali metal halides?
 - (a) they are crystalline
 - (b) they are stable ionic compounds
 - (c) they are coloured
 - (d) they possess high melting points

Ans: (c)

Hint: Alkali metal halides are colourless.

The IUPAC nomenclature of

- (a) 2, 3-dimethyl 7-bromo octane(b) 2-bromo 5, 6 dimethyl octane
- (c) 2-bromo 6, 7-dimethyl octane(d) 1-bromo 5,6 dimethyl heptane

Ans: (c)

- **Hint:** As per the rules of IUPAC nomenclature, bromine is more reactive group than methyl.
- (7) Which of the following acts as a Lewis acid?
 (a) Electrophile
 (b) Nucleophile
 (c) Neutrophile
 (d)

None of the above

Ans. (a)

- **Hint:** Substance which accepts an electron pair is Lewis acid. Electrophiles also accepts electron pair.
- (8) The most stable carbonium ion is:(a) Methyl carbonium ion

(b) Primary carbonium ion

(c) Secondary carbonium ion

(d) Tertiary carbonium ion

Ans. (a)

(9) An isomers of ethanol is:

(a) Methanol

(b) Dimethyl ether

- (c) Diethyl ether
 - (d) Ethylene glycol

Ans. (b)

Hint: Alcohols and ethers are functional isomers.

- (**10**) 1, 3-butadiene has:
 - (a) sp and sp^2 hybridised C–atoms

(b) sp, sp² and sp³ hybridised C-atoms

(c) Only sp² hybridised C-atoms (d) Only sp hybridised C-atoms

Ans. (c)

Part – c 3 markers

(1) Match list-I with list-II and select the correct answers using the codes given below the list.

	List – I		List – II
1.	Electron rich hydrides	a.	HF
2.	Metallic hydride	b.	CH ₄
3.	Salin hydride	c.	MgH ₂
4.	Electron deficient hydride	d.	NbH ₂
5.	Electron precise hydride	e.	B ₂ H ₆
(a) $1 \rightarrow a, 2 \rightarrow d, 3 \rightarrow c, 4 \rightarrow e, 5 \rightarrow b$			

(b) $1 \rightarrow e, 2 \rightarrow d, 3 \rightarrow c, 4 \rightarrow a, 5 \rightarrow b$

(c) 1 \rightarrow a, 2 \rightarrow d, 3 \rightarrow c, 4 \rightarrow b, 5 \rightarrow e

- (d) $1 \rightarrow b$, $2 \rightarrow d$, $3 \rightarrow c$, $4 \rightarrow e$, $5 \rightarrow a$
- Ans. (a)

answers using the codes given below the list.

		r		
	List – I		List – II	
1.	Protium	a.	Electron configuration	
			of 2_1H	
2.	Heavy	b.	Electron configuration	
	hydrogen		of ${}^1_1 H^-$	
3.	Tritium	C.	Electron configuration	
			of ${}^3_1 H^+$	
4.	1s ¹	d.	Emits low energy β -	
			particles	
5.	1s ⁰	e.	Highest proportion in	
			nature	
6.	1s ²	f.	It has one neutron	
(a) $1 \rightarrow e, 2 \rightarrow f, 3 \rightarrow d, 4 \rightarrow a, 5 \rightarrow b, 6 \rightarrow c$				
(b) $1 \rightarrow e$, $2 \rightarrow f$, $3 \rightarrow d$, $4 \rightarrow c$, $5 \rightarrow a$, $6 \rightarrow b$				
(c) $1 \rightarrow e$, $2 \rightarrow e$, $3 \rightarrow d$, $4 \rightarrow a$, $5 \rightarrow c$, $6 \rightarrow b$				
(d)	$1 \rightarrow f, 2 \rightarrow f, 3 \rightarrow f$	\rightarrow d,	$4 \rightarrow a, 5 \rightarrow c, 6 \rightarrow b$	

Ans. (c)

(3) The correct order of thermal stability of alkalie earth metal carbonates is

(a) $BaCO_3 > SrCO_3 > MgCO_3 > CaCO_3$

- (b) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$
- (c) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$
- (d) $CaCO_3 > SrCO_3 > MgCO_3 > BaCO_3$

Ans. (c)

Hint: The thermal stability of alkaline earth metals decreases as we move down the group.

(4) Which of the following statements regarding

alkali metals is not correct?

(a) Alkali metals tarnish in air

(b) They are kept under kerosene

(c) All alkali metals form oxide on burning in air.

(d) The reaction of alkali metals with water increases in violence of descending the group.

Ans. (c)

Hint: Li forms Li₂O

Na form Na_2O_2

higher alkali metal form super oxide

(5) Find X and Y in the following reactions

 $C_2H_5I \longrightarrow X + KI$

 $X \xrightarrow[]{Al_2O_3}{} Y$

- (a) C_2H_5OH, C_2H_5I (b) C_2H_5OH, C_2H_4
- (c) C_2H_5OH , C_2H_2 (d) C_2H_5OH , C_2H_6

Ans. (b)

Hint: $C_2H_5I \xrightarrow{KOH} C_2H_5OH + KI$ $C_2H_5OH \xrightarrow{Al_2O_3}{\Delta/-H_2O} CH_2 = CH_2 \text{ or } C_2H_4$ (6) Find X and Y in the following reactions. $C_2H_5OH \xrightarrow{Al_2O_3}{\Delta/-H_2O} X \xrightarrow{Cl_2} Y$ (a) C_2H_4, C_2H_5Cl (b) $C_2H_4, C_2H_2Cl_2$

(c)
$$C_2H_4, C_2H_4Cl_2$$

(d) $C_2H_2, C_2H_4Cl_2$

Ans. (c)

Hint:

$$C_2H_5OH \xrightarrow{Al_2O_3} C_2H_4$$
 or $CH_2 = CH_2 \xrightarrow{Cl_2} C_2H_4Cl_2$

Part – c 4 markers

(1) Match list-I with list-II and select the correct answers using the codes given below the list.

	List – I		List – II		
1	10H-1		Amphotoric		
1	[OH [−]] in	a.	Amphoteric		
•	H ₂ O				
-	OH	h			
2	$p^{\rm OH}$ of H_2O	b	$[Ni(H_2O_6]^{2+}2(NO_3)^{-}$		
•		•			
3	Concentratio	с.	$FeSO_4 \cdot 7H_2O$		
	n of H_2O				
4	Nature of	d	Reaction with $F_{\!2}^{}$		
•	H ₂ O	•			
5	Metallic salt	e.	Reaction with Na		
	Wietanie Sait	с.			
6	Complex salt	f.	7.0		
7	H ₂ O as an	g.	$10{ imes}10^{-7}$ mole per		
	-	δ.	10×10^{-7} mole per litre.		
	oxidizing		intre.		
	agent				
8	H_2O as a	h	55.55 mol. lit^{-1}		
	reducing				
	_				
(a) $1 \rightarrow g$, $2 \rightarrow f$, $3 \rightarrow h$, $4 \rightarrow a$, $5 \rightarrow b$, $6 \rightarrow e$, 7					
\rightarrow e, 8 \rightarrow d					
(b) $1 \rightarrow g$, $2 \rightarrow f$, $3 \rightarrow h$, $4 \rightarrow a$, $5 \rightarrow c$, $6 \rightarrow b$, 7					
\rightarrow e, 8 \rightarrow d					
(c)	(c) $1 \rightarrow h$, $2 \rightarrow f$, $3 \rightarrow g$, $4 \rightarrow a$, $5 \rightarrow c$, $6 \rightarrow b$, 7				
\rightarrow	\rightarrow e, 8 \rightarrow d				

(d) $1 \rightarrow g$, $2 \rightarrow f$, $3 \rightarrow h$, $4 \rightarrow a$, $5 \rightarrow c$, $6 \rightarrow b$, 7

 \rightarrow d, 8 \rightarrow e

Ans. (b)

(2) Which of the following equation is not involved in the solvay process of manufacturing sodium bicarbonate?

(a)
$$CaCO_3 \xrightarrow{heat} CaO + CO_2$$

(b)

$$NaCl + NH_3 + H_2O + CO_2 \rightarrow NH_4Cl + NaHCO_3$$

(c)

$$CaO + 2NH_4Cl \longrightarrow H_2O + CaCl_2 + 2NH_3$$

(d) $Na_2CO_3 + CO_2 + H_2O \xrightarrow{heat} 2NaHCO_3$

Ans. (d)

(3) A straight chain hydrocarbon has the molecular formula C_8H_{10} . The hybridization for the carbon atom from one end of the chain to the other are respectively sp^3 , sp^2 , sp^2 , sp^3 , sp^2 , sp^2 , sp^2 , sp and sp. The structural formula of the hydrocarbon would be.....

(a)
$$CH_3 - C \equiv C - CH_2 - CH = CH - CH = CH_2$$

$$CH_3 - CH_2 - CH = CH - CH_2 - C \equiv C - CH = CH_2$$

(c)

$$CH_3 - CH = CH - CH_2 - C \equiv C - CH = CH_2$$

(d)
 $CH_3 - CH = CH - CH_2 - CH = CH - C \equiv CH$

Ans.	(d)
------	-----

CH_3	-CH =	= CH ·	$-CH_2$	-CH =	= CH -	-C-	= CH
↓ [°]	\downarrow	\downarrow	\downarrow_{sp^3}	\downarrow	\downarrow	\downarrow	\downarrow
sp ³	sp ²	sp ²	sp³	sp ²	sp ²	sp	sp