1 (a) Molecular weight of
$$C_{60}H_{122} = 12 \times 60 + 122 \times 10^{-10}$$

= 720 + 122 = 842

- $\therefore 6 \times 10^{23}$ molecule $C_{60}H_{122}$ has mass = 842gm
- $\therefore \quad 1 \text{ molecule } C_{60}H_{122} \text{ has mass } \quad \frac{842}{6 \times 10^{23}}$

$$= 140.333 \times 10^{-23} gm = 1.4 \times 10^{-21} gm.$$

2 (a) $16g O_2$ has no. of moles $=\frac{16}{32} = \frac{1}{2}$ $14g N_2$ has no. of moles $=\frac{14}{28} = \frac{1}{2}$

No. of moles are same, so no. of molecules are

same

6

3 (b) $44g CO_2$ occupies 22.4*L* at STP

4.4g
$$CO_2$$
 occupies $=\frac{22.4}{44} \times 4.4 = 2.24L.$

4 (c) Mass no. \approx At. Wt. Mass no. = no. of protons + no. of neutrons At. no. = no. of protons.

5. (c) When
$$c = v \times \lambda$$
 than $\lambda = \frac{c}{v} = \frac{3 \times 10^8}{2 \times 10^6} = 1.5 \times 10^2 m$

- (d) Bohr's radius of the hydrogen atom $r = \frac{n^2 \times 0.529 \text{\AA}}{z}$; where z = Atomic number, n = Number of orbitals
- 7 zeeman effet
- 8 (d) $\lambda = \frac{h}{mv}$. For same velocity $\lambda \propto \frac{1}{m}$.

 SO_2 molecule has least wavelength because their molecular mass is high.

9. (c) $\Delta x \times \Delta p = \frac{h}{4\pi}$ is not the correct relation. But correct

Heisenberg's uncertainty equation is $\Delta x \times \Delta p \ge \frac{h}{4\pi}$.

10. (b) Each period consists of a series of elements whose atom have the same principal quantum no. (n) of the outer most shell i.e. In second period n = 2, this shell has four orbitals (one 2s and three 2p) which can have eight electrons, hence second period contains 8 elements from atomic no. 3 to 10.

11 (b) Na - Cl. Both belongs to III period.

12 (d)
$$I^- > I > I^+$$

54 53 52 atmoic number

- 13 (a) As effective nuclear charge on Na^+ is maximum. It has smallest size.
- 14. (c) During the conversion of neutral atom to cation size decreases because after removal one e⁻ or more
 (i) Nuclear charge per electron increases.
 (ii) Outermost shell is completely removed.
- **15.** (b) Atomic radius increases as no. of shells increases

- 16 (d) Alkali metals, lower the no. of valence e^{-} , lower is the value of ionization potential.
- 17) (b) In the given reaction oxidation state of Mg is changing from 0 to +2 while in nitrogen it is changing from 0 to -3. So oxidation of Mg and reduction of nitrogen takes place.

18) (b)
$$Z_{n_{(aq)}}^{2^+} + 2e^- \to Z_{n_{(s)}}^{0}$$
 reduction

19)

24 (

(

a)
$$Reduction$$

 $Cr_2O_7^{2-} + 14H^+ + 6\Gamma \rightarrow 2Cr^{3+} + 3H_2O + 3I_2$

21) Reduction
(c)
$$P + NaOH \longrightarrow PH_3 + NaH_2 PO_2$$

Oxidation

22. (b)
$$[Cr(H_2O)_4 Cl_2]^+$$

 $x + 0 + 2(-1) = +1; x - 2 = +1$
 $x = +3$ for Cr in complex.

23. (c) $Br_2 \rightarrow BrO_3^-$, in this reaction oxidation state change from 0 to + 5.

25. (b) By boiling temporary hardness of water can be removed.

$$Ca(HCO_3)_2 \xrightarrow{\text{Boil}} CaCO_3 + H_2O + CO_2$$

(insoluble)

26 (c)
$$Na_2Al_2Si_2O_8$$
 $xH_2O + Ca^{+2} \rightarrow Zeolite$

 $CaAl_2Si_2O_8.xH_2O + 2Na^+$

- 27 (a) Heavy water *i.e.*, D_2O slows down the speed of neutrons in nuclear reactors..
- 28 (d) The density of water is $1 g \ cm^{-3}$ at $4^{\circ}C$

so molarity
$$= \frac{1000}{18} = 55.5 M$$
.

29 (b) Element Na K IE_1 496 419 IE_2 4562 3051

$$IE_2$$
 4502 5051
Sodium has higher LE because of smaller atomic size

(c) Alkali metals are highly reactive metals. They react with
Alcohol –
$$2C_2H_5OH + 2K \rightarrow 2C_2H_5OK + H_2$$

Water
$$-2K + 2H_2O \rightarrow 2KOH + H_2$$

Ammonia –
$$K + (x + y)NH_3 \rightarrow \begin{bmatrix} K(NH_3)_x \end{bmatrix}_{\text{Ammoniated cation}}^+$$

 $[e(NH_3)_y]^-$ Ammoniated electron

But they do not react with kerosene.

(a) Carnellite – KCl.
$$MgCl_2$$
. $6H_2O$

Cryolite –
$$Na_3AlF_6$$

Bauxite – ($Al_2O_3.2H_2O$)

Dolomite –
$$MgCO_3$$
. $CaCO_3$

30

31

33 c

- 34 na2co3
- (d) When Na is heated in presence of air or oxygen, Na 35. burns to form sodium oxide and sodium peroxide.

37 a

- 38 d
- 39 a
- 40 c

2 markers

 \therefore 1L of gas at S.T.P. weight 1.16g 41) (a) \therefore 22.4 L of gas at S.T.P. weight = 22.4 × 1.16 = 25.984 ≈ 26

This molecular weight indicates that given compound is C_2H_2 .

42) (b) :
$$2gm$$
 of hydrogen $= 6.02 \times 10^{23}$ molecules
 $\therefore 1gm$ of hydrogen
 $= \frac{6.02 \times 10^{23}}{2} = 3.01 \times 10^{23}$ molecule.

- 43. (c) m can't be greater than l.
- 44 a
- 45. (b) n = 1 and m = 1 not possible for *s*-orbitals.

46. (a)
$$Fe_{26} = [Ar]3d^6 4s^2$$

 $Fe^{3+} = [Ar]3d^5 4s^6$

(a) $_{25}Mn - 3d^5 4s^2$. 47.

- (c) Element belongs to *d*-block is unnilhexium $(Unh)_{106}$. 48
- 49 b
- 50 a
- 51
- (d) Heavy water is $D_2O(1-c)$

Temporary hard water contains bicarbonates of Ca^{2+} and $Mg^{2+}(2-a)$

Soft water may have no foreign ions (3-b). Permanent hard water contains sulphates and chlorides of

 Ca^{+2} and $Mg^{2+}(4-d)$

(a) $6Li + N_2 \rightarrow 2Li_3N$ Lithium nitride. 52.

53 (a)
$$H_{3}^{1}C - C = CH - CH - CH_{3}^{4}$$

 $CI - CH_{3}^{2}$
 $CI - CH_{3}^{2}$
 2 -chloro-4, methyl-2-pentene

54 (b)
$${}^{1}CH_{3} - {}^{2}C - {}^{3}CH_{2} - {}^{4}CH_{3}$$

C-2 is quaternary carbon because it is attached to 4 other carbon atoms.

55. (c) [:: Molecular weight of $CuSO_4.5H_2O$ = 63.5 + 32 + 64 + 90 = 249.5]

 6×10^{23} molecules has weight = 249.5 gm

 1×10^{22} molecules has weight = $\frac{249.5 \times 1 \times 10^{22}}{6 \times 10^{23}}$ $=41.58 \times 10^{-1} = 4.158$

5

56 b
57 . (a)
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ ms}^{-1}}{600 \times 10^{-9} \text{ m}} = 5.0 \times 10^{14} \text{ Hz}$$
.
58 . (d) ${}^2_1 D_2 = (2 \text{ neutrons} + 2 \text{ protons}) = 4 \text{ nucleons}$
59 (b) $Cs > Rb > K > Na > Li$
Metallic character decreasing order
60 (c) Element No. of moles Simple ratio
 $C = 40\% = 40/12 = 3.33 \times 11$
 $H = 13.33\% = 13.33/1 = 13.33 \times 4$
 $N = 46.67\% = 46.67/14 = 3.33 \times 11$
Thus formula $CH_4 N$
61 c
62 . (b) (a) $2gm$ atom of nitrogen $= 28gm$
(b) 6×10^{23} atoms of C has mass $= 12gm$
 3×10^{23} atoms of C has mass $= \frac{12 \times 3 \times 10^{23}}{6 \times 10^{23}} = 6gm$
(c) 1 mole of S has mass $= 32gm$
(d) 7.0gm of Ag
So, lowest mass $= 6gm$ of C.
63 (a) (1) 1 molecule of oxygen
 $\therefore 1 \text{ molecule of } O_2 \text{ has mass } = \frac{32}{6 \times 10^{23}}$
 $= 5.3 \times 10^{-23} gm$

(II) 1 atom of nitrogen

$$\therefore 2 \times 6 \times 10^{23}$$
 atoms of N_2 has mass = 28gm

$$\therefore 1 \text{ atom of } N_2 \text{ has mass} = \frac{28}{2 \times 6 \times 10^{23}}$$

$$= 2.3 \times 10^{-23} gm$$

(III)
$$1 \times 10^{-10} g$$
 molecular weight of oxygen

g atomic weight = $2 \times 1 \times 10^{-10} = 2 \times 10^{-10} g$

(IV) $1 \times 10^{-10} g$ atomic weight of copper

So, order of increasing masses II < I < III < IV.

64 c d block

Best of luck for final exam form axay sir