Ph-9426340530,8140940630

+ JEE/

 Δ

GUJCET CRASH COURSE

<u>SEM- 3 - Ch- 1,2</u> SOLID STATE & SOLUTION

(1)

(2)

(3)

-is not a property of solid?
 (a) Rigid and incompressible
 (b) Definite shape
 (c) Fluidity
 (d) Definite volume
 Which is an amorphous substance?
 (a) NaCl
 (b) KC1
 (c) Rubber
 (d) H₂O
 When constituent particles are arranged on< the four points of four corners of the unit' cell then it
 - is called... (a) Primitive unit cell (b) FCC
 - (c) BCC (d) All of these
- (4) In cubic solid, all axial angles are..... (a) $\alpha = 90^\circ, \beta = 90^\circ, \gamma = 120^\circ$

(b)
$$\alpha = \beta = \gamma = 90^{\circ}$$

(c)
$$\alpha = \beta = \gamma \neq 90^{\circ}$$

d)
$$\alpha \neq \beta \neq \gamma \neq 90^\circ$$

- (5) Which is the example of hcp?
 (a) Graphite(b) ZnO(c) CdS
 (d) All of these
- (6) The packing efficiency of BCC is..... (a) 40% (b) 68% (c) 72% (d) 74%
- (7) The co-ordination number in one dimensional close packing is.........
 (a) 2 (b) 3 (c) 4 (d) 5
- - (c) cubic close packing

(d) None of these

(c) 6

- (9) The ABABAB stacking pattern in two dimension, the co-ordination number is......
 (a) 2
 (b) 4
 - (b) 4 (d) 8
- (10) In ccp arrangement the number of tetrahedral voids per unit cell is....
 - (a) 2 (b) 4
 - (c) 6 (d) 8
- (11) In ccp, the number of octahedral voids on the body centre is....

- (12) In ccp, octahedral voids arranged on each edge and unit cells.
 (a) 12, 2 (b) 12, 4 (c) 6, 4 (d) 6, 2
- (13) In 1 mole constituent particles, there aredefects of constituent particles in arrangement.
 - (a) 10^6 (b) 10^{12}
 - (c) 10^{18} (d) 10^{21}
- (14) In which defect, the density of the crystal increases?
 - (a) Vacancy defect(b) Interstitial defect(c) Both (a) and (b)(d) None of these
- (15) In interstitial defect, the number of atoms for unit volume......
 - (a) increases
 - (b) decreases
 - (c) remains constant
 - (d) increases or decreases
- (16)shows both Schottky and Frenkel defect?
 (a) NaCl (b) KCl (c) AgBr (d) KI
- (17) What type of solid is sodium chloride?

	(a) Ionic	(b) Molecular		(b) Avogadro's the
(10)	(c) Covalent	(d) Metallic		(c) Band theory
(18)	The melting points of 10	onic solids are		(d) Hybridisation
	(a) Very high	(b) Normal		_
	(c) Very low	(d) Abnormal	(33)	In one crystal stru
(19)	What type of solid is qu	iartz?		each corner, oxyg
	(a) Ionic	(b) Molecular		Tungsten (W) ato
	(c) Covalent	(d) Metallic		then the molecular
(20)	What type of crystal str	ructure is of silver metal?		(a) NaW_2O_2
	(a) fcc	(b) Simple cube		$() \mathbf{N} \mathbf{W} \mathbf{O}$
	(c) bcc	(d) Metallic		(c) Naw O_3
(21)	What is the percentage	ge packing efficiency of	(34)	Lithium forms bo
	simple cube?			length of the sid
	(a) 53.26	(b) 68.0		Atomic radius of t
	(c) 74.0	(d) 52.36		(a) 300 pm
(22)	How many times is the	he number of octahedral		(c) 152 pm
	voids as compared to te	etrahedral voids?	(35)	In a face centred
	(a) 4 (b) $\hat{8}$ (c) 2	(d) 0.5		the corner position
(23)	What is the number of	atoms in the unit cell of		face centred po
	body centred cube?			compound is
	(a) $\hat{2}$ (b) 1 (c) 4	(d) 6		(a) \overline{AB}
(24)	What is the number of	of atoms in face centred		
	cube?			(c) $\mathbf{A}_2 \mathbf{B}_5$
	(a) 2 (b) 1	(c) 4 (d) 6	(36)	Which crystal det
(25)	In which of the follow	ring compounds Schottky		figure?
	defect is present?			Na ⁺ Cl [−] Na
	(a) NaCl	(b) ZnS		, Ćŀ- 🔲 Cŀ-
	(c) SiO_{a}	(d) SrCl.	- <u> </u>	Na ⁺ Cl ⁻
(26)	In which of the follow	ving compounds Frankal		(a) Frenkel
(20)	defect is present?	wing compounds Trenker		(c) Both (a
	(a) NaCl	(b) 7 n S	(37)	Volume of atoms
	(a) NaCl			fcc structure ($r = r$
	(c) SIO_2	(d) $SrCl_2$		12 2
(27)	Which of the following	g compounds show metal		(a) $\frac{1}{2}\pi r^{3}$
	deficiency defect?			3
	(a) $Fe_{0.95}O$	(b) Fe_2O_{36}		(c) $\frac{20}{4}\pi r^{3}$
	(a) $\mathbf{Fe} \mathbf{O}$	(d) EaS		3
	$(c) \operatorname{Te}_{3} O_{4}$	(u) 1°CS _{1.6}	(38)	In one solid, A ato
(28)	Which of the foll	owing elements is a		atoms are at the e
	semiconductor?			of the solid is
$\langle 20 \rangle$	(a) Na (b) Al (c) Fe	(d) Ge		(a) $AB_2(b) A_2B$
(29)	Which type of semic	onductor is obtained by	(39)	Number of unit ce
	doping S1 with B?		(0))	Cl = 35.5)
	(a) n-type	(b) p-type		(a) 1.28×10^{21}
	(c) pnp-type	(d) npn-type		(a) 1.20×10^{21}
(30)	With which element, th	ne conductivity of ReO_3		(c) 2.57×10^{21}
	is matching?		(40)	In ionic solid havi
	(a) Copper	(b) Zinc (c) Iron		\mathbf{r}^+ .
	(d) Aluminium			$\frac{1}{r^{-}}$ 18
(31)	Which of the following	will be paramagnetic?		(a) less than 0.22
	(a) O_{2}^{2-} (b) Cr	3+		(a) 0.33 that 0.22
			(41)	One cubic structur
	(c) Na	(d) Cu	(• • • •	X-atoms are at th
(32)	Which theory is usefu	1 in explaining electrical		are at the centre
	conductivity in conduct	tors and semiconductors?		centre then the for
	(a) Pauli's principle			

(b) Avog	adro's theory		
(c) Band	theory		
(d) Hybr	idisation theo	ry	
 In one creach correct rungster then the reach correct (a) NaW (c) NaW (c) NaW Lithium length or Atomic r (a) 300 p (c) 152 p In a face the correct rungster reach correct (a) correct (b) correct (c) correct (ystal structur ner, oxygen (1 (W) atom is molecular for V_2O_3 VO_3 forms body of forms body of adius of the 1 m m centred cubi er positions	e sodium (Na) c) atom at ever at the centre of mula of the soli (b) Na_2W_3C (d) NaW_3O_5 centred cubic st its unit cell i thium will be (b) 240 pm (d) 75 pm c lattice, atom and atom B oc	atom are at ry edge and of the cube, d is cructure the is 351 pm. A occupies ccupies the
face ce	ntred points	, the formul	a of the
compour	ıd is		
(a) AB ₂		(b) A_2B_3	
(c) A_2B_2	5	(d) A_2B	
Which c	rystal defect	is found in the	e following
figure?			
Na ⁺ C	1^{-} Na ⁺		
		Nat [] N	a ⁺
\mathbf{Na}^{T} ((a) Eroph	al ((h) Schottley	
(a) Frenk	c) Both (a) ar	(0) Schouky	lo defect
Volume	of atoms pre	sent in a unit	cell having
fcc struct	ure (r = radiu	s of atom)	U
(a) $\frac{12}{\pi}$, ³	(b) $\frac{16}{\pi r^3}$	
$\binom{a}{3}$		$(0) - \frac{1}{3}$	
(c) $\frac{20}{3}\pi$	r ³	(d) $\frac{24}{3}\pi r^3$	
In one so atoms ar of the sol	lid, A atoms e at the edges lid is	are at face-cent of sides then t	res while B he formula
(a) AB_2	(b) $A_2B(c)$	$A_4B_3(d) A_3B_2$	
Number $Cl = 35.5$	of unit cells	n 1 gm NaCl is	s (Na = 23,
(a) 1.28	$\times 10^{21}$	(b) 5.14×10	21
(c) 2.57	$\times 10^{21}$	(d) 5.14×10	22
In ionic s	solid having f	cc arrangement	of value of
\mathbf{r}^{+} .	-		
<u> </u>			

(c) 0.73 to 1 (d) 0.41 to 0.73
(e) 0.73 to 1 (d) 0.41 to 0.73
(f) 0.4

(b) 0.22 to 0.41

(a)	XY_2Z_3	(b)	XYZ_3
(c)	$X_2Y_2Z_3$	(d)	X_8YZ_6

 Colligative properties of a solution depends upon

(a) Nature of both solvent and solute

(b) The relative number of solute and solvent particles

(c) Nature of solute only

(d) Nature of solvent only

2. A molal solution is one that contains one mole of a solute in

[NCERT 1983; DPMT 1983; CPMT 1985; IIT 1986; MP PMT 1987; EAMCET 1990; MP PET 1994, 99]

- (a) 1000 gm of the solvent
- (b) One litre of the solvent

(c) One litre of the solution

- (d) 22.4 litres of the solution
- **3.** Colligative properties are used for the determination of

[Kerala CET (Engg.) 2002]

- (a) Molar Mass
- (b) Equivalent weight
- (c) Arrangement of molecules
- (d) Melting point and boiling point
- (d) Both (a) and (b)
- 4. What does not change on changing temperature
 - (a) Mole fraction (b) Normality
 - (c) Molality (d) None of these
- 5. The vapour pressure of pure liquid A is 0.80 *atm.* On mixing a non-volatile B to A, its vapour pressure becomes 0.6 *atm.* The mole fraction of B in the solution is [MP PET 2003]
 (a) 0.150 (b) 0.25
 (c) 0.50 (d) 0.75
- 5. The relative lowering of the vapour pressure is equal to the ratio between the number of

[EAMCET 1991; CBSE PMT 1991]

(a) Solute moleules and solvent molecules

(b) Solute molecules and the total molecules in the solution

- (c) Solvent molecules and the total molecules in the solution
- (d) Solvent molecules and the total number of ions of the solute
- 7. Which of the following is incorrect [J & K 2005]
 - (a) Relative lowering of vapour pressure is independent

(b) The vapour pressure is a colligative property

- (c) Vapour pressure of a solution is lower than the vapour pressure of the solvent
- (d) The relative lowering of vapour pressure is directly propertional to the original pressure

When a non-volatile solute is dissolved in a solvent, the relative lowering of vapour pressure is equal to[BHU 1979; IIT 1983]

- (a) Mole fraction of solute
- (b) Mole fraction of solvent

ml

- (c) Concentration of the solute in grams per litre
 - (d) Concentration of the solute in grams 100
- 9. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P_o, the vapour pressure of solution is [DCE 2000]
 - (a) 0.10 P_o (b) 1.10 P_o
 - (c) $0.90 P_o$ (d) $0.99 P_o$
- For a dilute solution, Raoult's law states that[CPMT 1987; BHU 1979; IIT 1985; MP PMT 2004;MNR 1988; AMU 2002]
 - (a) The lowering of vapour pressure is equal to mole fraction of solute
 - (b) The relative lowering of vapour pressure is equal to mole fraction of solute
 - (c) The relative lowering of vapour pressure is proportional to the amount of solute in solution

- (d) The vapour pressure of the solution is equal to the mole fraction of solvent
- n. Which property is shown by an ideal solution
 [MP PET 2002]

(a) It follows Raoult's law (b) $\Delta H_{mix} = 0$

(c) $\Delta V_{mix} = 0$ (d) All of these

12. When W_Bgm solute (molecular mass M_B) dissolves in W_Agm solvent. The molality M of the solution is

(a)
$$\frac{W_B}{W_A} \times \frac{M_B}{1000}$$
 (b) $\frac{W_B}{M_B} \times \frac{1000}{W_A}$

(c)
$$\frac{W_A}{W_B} \times \frac{1000}{M_B}$$
 (d) $\frac{W_A \times M_B}{W_B \times 1000}$

13. The vapour pressure of benzene at a certain temperature is 640mm of H_g . A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600mm of H_g . What is the molecular weight of solid substance

(a) 49.50 (b) 59.6 (c) 69.5 (d) 79.8

- 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P_o, the vapour pressure of solution is [DCE 2000]
 (a) 0.10 P_o (b) 1.10 P_o (c)0.90 P_o
- 15. The vapour pressure of a solvent decreased by 10mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrease in the vapour pressure is to be 20mm of mercury

(a)) 0.8	(b) 0.6

(c) 0.4 (d) 0.2

16. In osmosis

[DPMT 1985]

- (a) Solvent molecules move from higher concentration to lower concentration
- (b) Solvent molecules move from lower to higher concentration
- (c) Solute molecules move from higher to lower concentration
- (d) Solute molecules move from lower to higher concentration
- 17. Two solutions A and B are separated by semipermeable membrane. If liquid flows form A to B then[MH CET 2000]
 - (a) A is less concentrated than B
 - (b) A is more concentrated than B
 - (c) Both have same concentration
 - (d) None of these

18.The average osmotic pressure of human blood is7.8 bar at $37^{\circ}C$. What is the concentration of an
aqueous *NaCl* solution that could be used in the
blood stream[AIIMS 2004]

- (a) 0.16 mol/L
 (b) 0.32 mol/L

 (c) 0.60 mol/L
 (d) 0.45 mol/L
- 19. The osmotic pressure of a solution is given by the relation[CPMT 1983, 84, 87, 93, 94]
 - (a) $P = \frac{RT}{C}$ (b) $P = \frac{CT}{R}$ (c) $P = \frac{RC}{T}$ (d) $\frac{P}{C} = RT$
- 20. The concentration in *gms* per *litre* of a solution of cane sugar (M = 342) which is isotonic with a solution containing 6 gms of urea (M = 60) per *litre* is[Orissa PMT 1989]

(a) 3.42	(b) 34.2
(c) 5.7	(d) 19

- 21. The molal elevation constant is the ratio of the elevation in B.P. to [CPMT 1982]
 (a) Molarity (b) Molality
 - (c) Mole fraction of solute
- (d) Mole fraction of solvent
- 22. At higher altitudes the boiling point of water lowers because

[NCERT 1972; CPMT 1994; J & K 2005]

- (a) Atmospheric pressure is low
- (b) Temperature is low
- (c) Atmospheric pressure is high
- (d) None of these

(23) When 10g of a non-volatile solute is dissolved in 100 g of benzene, it raises boiling point by $1^{\circ}C$ then molecular mass of the solute is (K_{h} for benzene =2.53k- m^{-1}) [BHU 2002]

(a) 223 <i>g</i>	(b) 233 g
(c) 243 g	(d) 253 g

24. Molal depression constant for water is $1.86^{\circ}C$. The freezing point of a 0.05 molal solution of a non-electrolyte in water is

[MNR 1990; MP PET 1997]

(a) $-1.86^{\circ}C$	(b) $-0.93^{\circ}C$
(c) $-0.093^{\circ}C$	(d) $0.93^{\circ}C$

- **25.** Van't Hoff factor of $Ca(NO_3)_2$ is **[CPMT 1997]**
 - (a) 1 (b) 2
 - (c) 3 (d) 4